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1. Introduction Y i
\\:S> Many of the inventory models which are used in practice rely upon knowing

the probability distribution of demand over a leadtime. The common assumption

is that this distribution is normal. However, in certain circumstances, the |
normality assumption may be inappropriate. The purpose of this paper is to

derive the exact distribution of leadtime demand under the following assumptions:

customer requisitions occur according to a stationary Poisson process, requisition
sizes follow a lqgarithmic distribution and leadtime is a random variable with

the gamma distribution. In addition to deriving the exact distribution of lead-

time demand, we compare our results to actual operational data and discuss a

'y Syt

variety of approximations.

A number of researchers have considered the problem of determining inventory

operating policies when requisition size exceeds one. For example, Hausman [6]

extends Hadley and Whitin's [5] heuristic while Archibald and Silver [1] derive

optimal (s, S) policies. These studies differ from ours in two ways. First, in
every case leadtime was assumed to be deterministic. Second, they focus primarily ;
on describing optimal and suboptimal ordering policies. Our interest is in a de-

tailed examination of the distribution of demand over leadtime.

2. The Logarithmic Diétribution
The logarithmic (or log series) distribution was originally derived by f'
Fisher et. al. [4] and has been discussed by Sherbrooke [1l] in connection with 1

inventory problems. It can be derived as a limiting case of the negative bi-

nomial distribution and has the form

(L) £(x) = o~ for x=1, 2, ...
-x 1n(1-0)




[ ]

Gk A K e N 8 AT

.
where 0 < O < 1. Chakrauarti et. al. [3] recommend the method of moments be
used to estimate O. It is easy to show that

(2) E(Q =0
-(1-0)1n(1-0)

~

which means that an estimator for O, say 0, solves the trancendental equation

3) xX=06
-(1-0)1n(1-0)

where i'is the oﬁserved sample mean. Since the right hand side is an increasing

function of O, this equation can be solved very efficiently by interval bisection.
We have collected data describing the requisition size distribution for a

number of Air Force EOQ-type (i.e. consumable) items. For many of these items,

the logarithmic distribution appears to be a useful approximation to the observed

data. An example of a specific item is presented in Table 1. In this case,

the observed sample mean is 3.94, which results in 6 = ,901. Notice the very

close agreement between the observed and the predicted cumulative distribution

functions for this item.

3. The LPG Distribution

Let us now assume that requisitions are generated by a Poisson process and
the requisition size has a logarithmic distribution. (That is, the demand pro-
cess is a compound Poisson process with logarithmic compounding distribution).
It is well known that the total number of units demanded in any fixed time, t,
say Z(t), has the negative binomial distribution. In particular, we obtain
(4) P{z(t) = x} = (ct + x = 1)! (1-0)¢" " for x =0, 1, 2, ...

x! (ct-1)!

where ¢ = -A/1n(1-0) and A is the requisition arrival rate.

| A B ———en — W+ =
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Table 1. Comparison of observed frequencies and those predicted by logarithmic
distribution for a typical EOQ type item.
Number of Observed Theoretical Observed Theoretical
) X Observations Frequency Frequency Cumulative Cumulative
1 93 4247 .3896 4247 .3896
2 31 L1416 .1755 .5663 .5651
3 13 10594 .1054 .6257 .6705
4 15 . .0685 .0712 .6942 L7417 3
5 10 .0457 .0514 .7399 .7931 %
6 15 .0685 .0386 .8084 .8317 ?
7 8 .0365 .0298 . 8449 .8615 §
8 8 .0365 .0235 .8814 .8850 ?
9 3 .0137 .0188 .8951 .9031
10 4 .0183 .0152 .9134 .9190 i’
11 7 .0320 .0125 .9454 .9315 |
12 3 .0137 .0103 .9591 .9418 ‘
13 0 .0000 .0086 .9591 .9504 |
14 1 .0046 .0072 .9637 .9576 }
15 2 " . L0091 .0061 .9728 .9637 i
16 1 .0046 .0052 .9774 .9689
17 0 .0000 .0043 .9774 .9732 :
18 1 .0046 .0037 .9820 .9769
19 0] .0000 .0031 .9820 .9800
20 2 .0091 .0027 <9911 .9827
25 2 .0091 .0008 1.0000 .9915
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This result appears to be due to Quenouille [10]. Baswell and Patil [2]
give fifteen different derivations of the negative binomial distribution, thus
accounting for its power in describing many common phenomena.

Now let us assume that the procurement leadtime, T, is a continuous non-
negative random variable with probability density g(t). In general, the number
of units demanded in time T is a random variable with probability function h(x)

given by

(5) h(x) = [ £GaT) (1) dv
' o]

where f(x|t) is the probability function of the number of units demanded in a
time T. Under our assumptions, f(xI1T) has the negative binomial distribution.
Since ¢T is in general not an integer, we use the gamma function representation

for the factorials, so that

(6) h(x) = 0* T T(ct + x)(1-0)¢" g(1) dr.
x! ° I'(cT)

Using the fact that T'(a) = (a~1) T (a-1) we have

x~1 X k .
(7) Tet +x) =T (et + j) = IT(cT) Sxk’
I'(cT) j=0 k=1

where the coefficieunts Sxk are known as Stirling numbers of the first kind and
can be computed from the recursion

(8) Sxk = Sx—l,k-l + (1) s

x-1,k’
for k = 1;, 2, seoy X and x = 1, 2, ess 3
with S = 0 for all x.
X0
Furthermore, from the definition of c,
(9) (1-0)°T = exp{ct 1n (1-0)} = e-AT,

so that we may now write

.

e e e e

e T

B o

e~
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X o
(10) h(x) =0* 5 &s Ji ™M g0y dar.
K
o]

We now specialize to the case where g(1) has the gamma distribution with

parameters o and B so that :

an g =g* e for 15 0. i
[(a) 1

Since leadtimes must be non-negative, the gamma distribution should provide 1 1
sufficient flexibility to model leadtime variability in many operating environ- ]

ments.

Using the fact that

e SO it BTN B

(12) f ool SOBYC
0o k+a f
(A+B) H

and that, as above,

k. j
(13) T(kta) = Z aJSk,, ;
T () j=1 :
|

we obtain the following as the probability function for the number of units

demanded in a leadtime:

a X e k k j V
(14) hyx) =8 9 c Sk I a K] for x =1, 2, 3, ... |
A48 x! k=1 \ A+B XK y=1

and h(o) =f 8 Y°.
B

] We call this the LPG distribution (for Logarithmic-Poisson-Gamma). Its

four parameters are a, B, © and A (O and A determine c). An example of the LPG

distribution is presented in Table 2 for a = 1, B =1, O = .8 and A = 1.

:
ke
,
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4. A Recursion for Integer o

For numeric calculations, we found the following recursion to be useful.
Let us assume that a is integer, and let C1 = (B/(A+ﬁ)fxand C2 = ¢/ (A+B).

Further, using (13) let us define

k
(1) T , =c¢, .0 ¢ s (@ +k - 1)!
x,k 1 < 2 x,k "’“Gifffif”‘

Hence, h(x) may be computed as a sum of Tx Kt
. E 4

X

(16) h(x) = L, T o

Note that T
X,0

0 since S =0
. X,0

and that
= X - \ ]
Tx,x Cl . (OCZ) (a0 + x 1!
x! (@ - 1)!
(17) = OC2 (a+x-1) Tx—l,x—l
X

since § % = 1. Using (8), we may now write Tx,k in terms of Tx-l,k;

specifically, we obtain:

18) LA %_[c2 @+k=1T )\ 3+ &=-DT_, I

Thus, h(x) may be evaluated using only Tx-l Kk terms. This provides
»
significant reductions in computer memory and calculation requirements compared

to a direct evaluation of (14) for each x.

5. Approximations

Many inventory models require computing reorder points from fractiles of
the leadtime demand distribution. Finding exact fractiles of the LPG distri-

bution might be too demanding computationally for many real applications. 1In

P Tg T e Iy e Ty =

1T i
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Table 2., The L-~G Distribution

Parameters a=1, B=1, 0=.8, A=l.

x h(x) H(x)
0 .5000 .5000
1 .1243 .6243 1
2 .0806 .7049 3
3 .0589 .7638
4 L0451 .8089
5 .0355 L8444
6 .0283 .8727
7 .0228 .8955
8 .0185 .9140
9 .0151 .9291
10 .0124 .9415
11 .0101 .9516
12 .0083 .9599
13 .0069 .9668
14 .0057 .9725
15 .0047 .9772
16 .0039 .9811
E _ 17 .0032 .9843
. 18 .0027 .9869 i
L 19 .0022 .9892 ‘

20 .0018 .9910
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this section we consider an approximation which uses a scaled version of the
Poisson distribution to approximate the negative binomial distribution.

The mean and variance of Z(t), tle number of units demanded in time t,

are respectively
(19) E@(t)) = ctd/(1-0).

2
(20)  VAR(Z(t)) = ctd/(1-0)",

which gives VAR(Z(t))/E(Z(t)) = (1-0)-1. In certain circumstai.ces, one may have
knowledge of the variance to mean ratio of the demand which can then be used to
estimate O directly.

The approximation is based upon replacing the negative binomial distribution
of Z(t) with a scaled Poisson distribution. Let Y be a Poisson random variable
with parameter ut and let W be defined by W = kY for some k > o. We may think
of W as a random variable which assumes values 0, k, 2k, ... and whose distri-
bution depends upon the two parameters pt and k.

Since
(21) EW) = kpt

9
(22) VAR(W) = k“ut

we have VAR(W)/E(W) = k. Thus, we set k = (1 - O)_l to achieve the same variance
to mean ratio. Comparing the mean and variances of W and Z(t) we see that pu = cO
(recall that ¢ = =A/In(1-0)).

Since the negative binomial distribution is defined on all non-negative
integers, we would like the approximation to be defined on the non-negative
integers as well. We have found the following procedure works well. Assume
that the scaled Poisson probabilities are shifted to k/2, 3k/2, 5k/2, ... so

that
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(23) PIW = (1) k/2} = M u=0, 1, 2,... &

ne t

We then assume that the cumulative distribution function is linear between nk/2
and (n+1)k/2. As an example, suppose O = .75, t = 1, ¢ = 2 (that is * = 2.77).
Then p = 1.5, k = 4 and

PIW =21 =e Mt 2 23]

PiN =61 =e"Ye = L3347 ‘

PiW = 10} = ¢ " ue)? /2 = L2510

PIW = 14} = o "o, 2 731 = L1255

etc.,

The comparison of the exact negative binomial probabilities and the scaled

Poisson approximation is presented in Table 3 for this case.
We now obtain an approximation to the LPG distribution by averaging the
scaled Poisson approximation of the negative binomial with the gamma distribution

of leadtime. That is,

X0

(24) pl{z(1) = x} - f e TnXk g0l BT g,
0 (x/k)! I'(a)
But this integral is exactly a Poisson mixture with a gamma distribution ;

which is still another way that the negative binomial distribution can be derived
(see Baswell and Patil [2]). Hence, the approximation for the LPG distribution

is a scaled version of the negative binomial distribution. The approximation

therefore is: )

(25) P{z(1) = kx} = (atx-1)! (B8 \® )X
x! (a-1)! \p+ n

for x = 0, 1, 2, «sso
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Table 3. Comparison of Negative Binomial and Scaled Poisson Approximations
(0=.75, t=1, c=2, A\=2.77)
Negative Binomial Negative Binomial Scaled Poisson Scaled Poisson
X Probabilities Cumul. Probabilities Cumul. Probabilities Probabilities
0 .0625 .0625 .0744
1 .0938 L1563 L0744
2 .1055 .2618 L2231 L0744
3 .1055 . .3673 .0837
4 .0989 .4662 .0837
5 .0890 .5552 .0837
6 .0779 .6331 .5578 .0837
7 .0667 .6998 .0628
8 .0563 .7561 .0628
9 .0469 .8030 .0628 h
10 .0387 .8417 .8088 .0628
11 .0312 .8729 .0314
12 .0257 . 8986 .0314
13 .0208 .9134 .0314
14 .0167 .9361 .9343 .0314
15 .0134 ' .9495 .0118
16 .0106 .9601 .0118
: 17 .0085 .9685 .0118
ﬂ 18 .0667 .9753 .9814 .0118 :
§ . 19 .0053 .9806 .0035 ‘
: 20 .0040 .9846 .0035
l 21 .0033 .9879 .0035 \

j 22 .0026 .9905 .9955 .0035
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Note that these probabilities are defined on 0, k, 2k, .... As with the
scaled Poisson we suggest shifting these probabilities to k12, 3k12, ... and
approximating the probability function by assuming the cumulative distribution
function is linear between these fractile points. We tested a variety of cases
and found the fit to be excellent, especially in the tails. 1In Table 4 we com-
pare the exact LPG probabilities for the parameter set considered in Table 2
with the scaled negative binomial approximation. Note that since 0U=.8, we have
k=5 and the approximate cumulative probabilities (labelled H(x) in the table)
are defined at the points 2.5, 7.5, 12.5, etc. The final column gives the ap-
proximate cumulative distribution function defined on the positive integers
obtained from a linear interpolation between the fractiles. Notice the close
agreement between the exact and approximate cumulative probabilities in the

tail of the distribution.

6. The First Four Moments of the LPG Distribution

Knowledge of the moments of a complex distribution can be utilized in a
variety of ways. The moments can be used to estimate the distribution para-
meters or to approximate the distribution itself. We derive the first four
central moments (moments about the mean) of the LPG distribution.

The distribution of Z(t), the number of units demanded in time t, is
negative binomial with parameters q=0, p=1-0 and n=ct. From Kendall and Stuart
(7], the first four cumulants of the negative binomial distribution are given

by
2 3 2 4
K, = nq/p, K, = nq/p’, Ky= nq(l+q)/p- and K, = nq(l+4q+q")/p .

The first three cumulants are equal to the first three central moments, respec-

tively, while the fourth central moment, Hys is given by
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Table 4, The Scaled Negative Binomial Approximation to the LPG Distribution
(Parameters are the same as those of Table 2),
Exact Probabilities Approximate Probabilities
. Approximate

X h(x) H(x) H(x) h(x) Cumulative
0 .5000 . 5000 . 1905 .1905
I 1243 L6243 .1905 .3810
2 .p806 . 7049 .6667 .1905 .5715
3 .0589 .7638 L1174 .6889
4 L0451 . 8039 .0444 .7333
5 .0355 .B8444 L0444 L7777
6 .0283 .8727 L0444 .8221
7 .0228 .8955 .8889 L0444 .8665
8 .0185 .9140 3296 .8961
9 .0151 .9291 L0148 .9109
10 L0124 L9415 .0148 L9257
11 .0101 L9516 .0148 .9405
12 .0083 .9599 .9630 .0148 .9553
13 .0069 .9668 .0099 .9652
14 .0057 .9725 .0049 .9701
15 .0047 L9775 .0049 .9750
16 .0039 .9811 .0049 .9799
17 .0032 .9843 .9877 .0049 .9848
18 .0027 .9869 .0033 .9881
19 .0022 .9892 .0016 .9897
20 .0018 .9910 .0016 .9913
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Hence, the

(26) Wy =
? -
(27) Hy
(28) Hy =
(29) H, =
In ord
relationshi
(dependent)
(30) E(Y)

first four central moments (f.f.m.) of Z(t), say o 1<i<4, are
ctd/(1-0)
ctO/(l-O)z
3

ctQO(1+0)/ (1-0)

Nl - b
ctO(1+H40+H0 +3¢tC) / (1-0)
er to derive the f.f.m. of the LPG distribution, we use the following

ps which can be found in Parzen [8], p. 55: Let X and Y be two

random variables. Then

= E[{E(YIX)]

(31) VAR(Y) = E[VAR(YIX)] + VAR[E(YIX)]

(32) uy(Y) = E[ug(YIX)] + uy[E(YEX) ]

(33) u, (V) = E[u,(YIX)] + 6E[VAR(YIX)] - VAR[E(Y(X)]
+ 1, [E(YIX)]

where

(36) ny(1) = E[=E(¥)]]

(35) 1, (0 = E[[Y-E(D]]

In the context of our problem, we interpret Y as Z(1) and X as 7. It

follows that

E(Z(1)) = E[E[Z(T)iT]]

(36)

= E[cT0/(1-0)]

= cad/B(1-0).
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Similarly,
VAR(Z(1)) = E[VAR(Z(1))1] = VAR[E(Z(t}) 1))
= E[c10/(1-0)] + VAR[c10/ (1-0)]
) 2 2 2 2
= a0/ (B(1-0)") + (¢2)° a/ (B (1-0)%)
37 = o0/ [6(1=0)]% {B+cO}.

Following the same kinds of arguments, one eventually obtains

(38) yz()) = a0 4 {8°(+0) + 2¢%0%)
[B(1-0)]

(39) 1 2()) = a0, (8°(a+0r0%) + 82000t + 68c70% + 707 (Gate) )
[B(1-0) ]
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